Wie entsteht ein Protein?

13.12.13

FNRDiesen Artikel drucken

Proteine sind für unseren Körper unentbehrlich, denn sie bestimmen nahezu alle biochemischen, strukturellen und ordnenden Funktionen unseres Körpers. Diese wichtigen Stoffe entstehen am Ende einer längeren Kette von Ereignissen.

An gewissen Stellen in der DNA löst sich die Verbindung zwischen den A, T, C und G-Basen, die Doppelhelix öffnet sich (siehe auch „Was ist DNA?“).

Dann beginnt an einem der beiden DNA-Stränge die eigentliche Transkription, d.h. das Umschreiben des Gens. In diesem Schritt wird von einer Sprache in die andere übersetzt, nur dass unser Körper nicht deutsch und französisch spricht, sondern „DNA" und „RNA“.

Die „Übersetzung“ der DNA

Im ersten Schritt baut die sogenannte RNA-Polymerase II (übrigens selbst ein Protein) ein Boten-RNA oder mRNA genanntes Molekül zusammen. Es besteht aus einem langen Strang aus Basen - der DNA sehr ähnlich und doch ein bisschen verschieden.

Für jedes G im DNA-Strang setzt die Polymerase in den neu gebildeten RNA-Strang ein C, für jedes C ein G, jedes T ein A und -kleine Ausnahme- für jedes A ein U – die Basen C, G, A und U sind die vier Hauptbestandteile der mRNA.

Proteine – Aminosäuren wie Perlen an einer Kette

Die mRNA ist der Bauplan der Proteine: Jedes Basen-Trio steht für eine von 20 Aminosäuren, den Bausteinen der Proteine. Ist z.B. die Sequenz der mRNA CUU-AAG-GUG... werden die Aminosäuren Leucin, Lysin, Valin... verbunden. Der mal kurze mal längere Strang an Aminosäuren bildet das jeweilige Protein.

Etwas komplizierter ist es trotzdem, denn die anfängliche Annahme, dass jedes Gen für nur ein Protein kodiert, ist falsch: Je nach Zelle und Entwicklungsstadium bestimmt das gleiche Gen den Aufbau verschiedener Proteine.

Ein vielzitiertes Beispiel ist das DSCAM-Gen: Es kodiert für insgesamt 38.000 Proteine. Wie ist das möglich, bleibt doch die DNA immer die Gleiche?

Von Exons und Introns...

In der DNA folgen sogenannte Exon- und Intron-Sequenzen aufeinander. Bei der Bildung von mRNA werden zuerst beide kopiert, dann wird die mRNA gespleißt: d.h. die Introns werden entfernt und die Exons verbunden. Erst dann beginnt der Bau der Proteine. Die Exon-Teile werden also in den Bau miteinbezogen, die Intron-Teile nicht.

Doch es wird noch komplexer, denn viele Zellen betreiben alternatives Spleißen. So kann für eine bestimmte mRNA z.B. ein oder mehrere Exons zusätzlich zu den Introns weggeschnitten werden. Ändert sich die Reihenfolge der Basen in der mRNA, ändert sich auch die Sequenz der Aminosäuren, und somit die Struktur und die Funktion des entstehenden Proteins.

Autor: Liza Glesener
Foto: ©Tom Grill/Corbis

Auch in dieser Rubrik

Kampf gegen den Krebs: „Natural Killer” Zellen auf dem Anmarsch!

07.12.17 Wissenschaftler am LIH entdecken einen Mechanismus zur Hemmung von Hautkrebswachstum durch Erleichterung des Angriffs von „Natural Killer” Immunzellen. > Ganzen Artikel lesen

Meet the Scientists: Jean-Yves Ferrand, Research Nurse

01.12.17 Jean-Yves Ferrand betreut die Teilnehmer von klinischen Studien, also wissenschaftlichen Studien mit Patienten oder gesunden Freiwilligen. > Ganzen Artikel lesen

Studienteilnehmer gesucht: Wie wirkt sich Mehrsprachigkeit auf die Entwicklung des Gehirns aus?

22.11.17 Das LIH lädt über 64-jährige, in Luxemburg ansässige Personen ein, die täglich zwei oder maximal drei Sprachen sprechen, bei ihrer Studie MemoLingua mitzuma...> Ganzen Artikel lesen

Alternative zu Tierversuchen: Doktorandin aus Luxemburg erhält Preis für ihre 3D-Zellkultur des menschlichen Mittelhirns.

18.11.17 Anna Monzel der Universität Luxemburg erhält den Young Researchers Prize der Kosmetikfirma Lush. > Ganzen Artikel lesen

Makromolekulare Kristallografie: Das renommierte EMBL aus Heidelberg bietet Schülern Einblicke in die Molekularbiologie

03.11.17 Wer die Prozesse des Lebens begreifen will, kommt um Molekularbiologie nicht herum. Die Vorlesungsreihe „Insight Lectures “ vermittelt dazu die Grundlage. > Ganzen Artikel lesen

Verwandte Themen